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Motivation

An important share of the heat demand in Switzerland is already provided
by heat pumps. However, it is necessary to speed up this transition from
non-efficient and polluting heating systems to more sustainable ones.

Traditional demand side management (DSM) techniques still in use today,
consist of deactivating loads, such as heat pumps, during peak consumption
times. Novel coordinated control of larger numbers of loads opens the pos-
sibility of new DSM business cases. However, this requires understanding
of the operation of the HP components to avoid disrupting their duty cycles
and potentially damaging the equipment.

Methods for recognition of heat pump
operating modes

As the roll out of digital-meters continues practically in every utility, numer-
ous research and innovation projects have looked at utilizing these data to
better manage loads (DSM). When it comes to HPs within those loads be-
hind the meter, aspects studied are related their control, identification and
characterization.1,2

Our work concerns the identification of the HP state of operation. For this
purpose, methods developed in previous work make use of

• classical machine learning: feature engineering, dimensionality reduc-
tion, clustering;

• Bayesian change point detection approaches; and

• deep learning

The classical approach consists, essentially, of two steps (1) cycle recog-
nition (i.e. cycles may be of different durations), and (2) classification of each
cycle into one of the possible HP states. The classification takes places in
a feature space corresponding to various summary metrics of each cycle.
On the other hand, when applying artificial neural networks (NN), the cycle
duration is fixed and the NN is trained to learn the mapping between the HP
cycle-power consumption time series and the labels indicating the operating
state. As illustrated in Figure 1, in this work we abstract the different HP
operating states into the most relevant ones

• off,

• space heat, and

• hot water

Other common approaches for time series classification such as dynamic
time wrapping, longest common subsequence, or clustering have not yet
been applied.

Figure 1. Load profile and states of an air source HP (PLZ92242) from
WP Monitor data set

Our focus is on recognizing the operational state of heat pump (HP) sys-
tems with algorithms that can potentially by applied near-real time to inform
control decisions, we investigate one dimensional convolutional NNs. Com-
pared to recurrent NN, which have feedback loops between output and input,
low complexity convolutional neural networks (CNNs) have been shown bet-
ter performance on sequence modelling tasks.3,4 A simple model of a NN
can serve as good baseline for more advance deep learning models, re-
cently such 1D-CNN type of models have been applied to electricity load
forecasting5, and prediction of energy efficiency of domestic cooling sys-
tems.6 For the implementation of the models we use TensorFlow (v2.2.0)
through its high-level application interface Keras7.

Data sets and models
In the context of this work, we explore several datasets, Table 1 describes
three of them. The HSLU data is collected for load disaggregation research,
while the NTB Buchs and the WP Monitor data concern dedicated HP re-
search activities aimed at evaluating the efficiency of HP systems. Thus,
besides the energy consumption data typically recorded by digital energy
meters; temperature, volumetric flow, and power consumption are recorded
by dedicated sensors. Moreover, binary variables indicating the operation
of key components such as compressors, pumps, electrical backup heaters,
cooling circuits, and storage tanks are provided. Here, we use those vari-
ables to label data with the corresponding state of operation. Figure 1 shows
the compressor power consumption and state of operation of an air source
HP during a winter day.
Table 1. Three load monitoring data sets that include heat pump data.

Description
NTB Buchs 8 10-second resolution, 13 HP systems (air-water, brine-water,

variable speed, systems with cooling, new and renovated sys-
tems), duration 3 years.

WP Monitor 9 1-minute resolution, 87 HPs (direct evaporation systems,
ground source HPs, and variable speed compressor HPs), du-
ration 3 years

HSLU 10 5-minute resolution, power consumption data from 3 HPs (air-
water, and brine-water), duration 1.5 up to 3.5 years

State encodings. From the NTB Buchs and WP monitoring data is
possible to derive ground truth information about the state of operation. We
apply the following steps: (1) define a set of N components, e.g. com-
pressor, pumps, and electrical backup heater; (2) select binary variables
bi that describe the state of each component i at each time step; where
bi = 0 and bi = 1 stand for component i off and on respectively; (3) given
the state of each component i in bi, encode the HP state as a concate-
nation of them; and (4) from the space of states 2|N | abstract the states
S = {off, space heat,hot water} on the basis of the engineering understand-
ing of the heat pump. Table 2 shows summary statistics of the encoded
states for a year of operation, as expected states have distinctive statistical
features.

Table 2. Compressor power [W] summary statistics per state of
ground source HP during 2011 from WP Monitor data set.

count mean std min 25% 50% 75% max
off 425884 0 1 0 0 0 0 180
space heat 81284 1199 169 60 1200 1200 1260 2160
hot water 18432 1841 287 60 1680 1920 2040 2280

Modelling and prediction. Our model takes as input compressor
power consumption X and outputs states S, it consists of stacked 1D-
convolutional layers nL with a given number of filters, filter size ks, causal
padding, and dilation rate r. The model parameters are learned with Adam
optimizer to minimize mean squared error. Learning rate 0.1, 60 epochs
with batch size 120 yield reasonable results, however for some experiments
these maybe adjusted to speed up convergence or avoid overfitting. Evalu-
ation of model prediction is done calculating the accuracy of the predictions
compared to the true states. We test different model configurations (nL, ks, r)
and look a head horizons (hours to day-ahead) to illustrate their impact on
forecast accuracy and on computing resources (training and inference time,
and model size).

Final remarks and outlook

Several data sets are available to study the behaviour of heat pumps as seen
from the grid, but dedicated monitoring campaigns are valuable to observe
the behaviour behind the meter. We use these data to encode the heat pump
state of operation, and evaluate the performance of one dimensional convo-
lutional neural networks (1D-CNNs) with different configurations to predict
the time evolution of the states. As expected, sudden changes of states are
hard to predict correctly. However, training these networks with only a cou-
ple of hours of training data, on a laptop takes less than a minute for the
deepest network (4 convolutional layers) we tested. Thus, it seems feasible
to run them in an online fashion. Training on a full year of 1-minute data,
for the deepest network takes up to 20 minutes. Next steps in our research
involve the evaluation of models to predict energy consumption at different
levels of aggregation.
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