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INTRODUCTION
The flexibility of microgrid energy dispatch can be improved by using EVs as 
storage devices that can consume intermittent renewable energy generation 
surpluses and then re-inject this energy at a later time. We apply 
reinforcement learning (RL) based methods to the distributed, EV-enabled 
load balancing problem inherent to this strategy. We observe the performance 
of EV charging/discharging controllers that use RL to decide its power flow 
set-point for every minute of its EV's scheduled charging/discharging session. 

SYSTEM MODEL
▪ Energy community of five apartments with energy consumption habits 

typical of their subtype
▪ Four electric vehicles of differing models, and thus different energy needs 

and charging/discharging characteristics
▪ Community serviced by combination of main electrical distribution system 

and local PV distributed energy resource
▪ PV generation output modelled after a real PV plant in Freiburg recorded in 

the year 2013; The PV signal was scaled to have a 15.85 kW peak 
generation capacity, which made its total generation over the entire year 
20,000 kWh.

▪ Considered two scenarios for smart grid communications infrastructure
○ Case 1: Smart meters report minute-scale price signal to EV controllers
○ Case 2: Also have aggregator node to prevent surplus EV discharge

Reinforcement Learning Enabled EV (Dis)Charging
Markov Decision Process Perspective:
▪ The environment is the EV and power system, while the agent is the 

charging controller
▪ Every minute, the EV charger must update its charging set point; this 

update is considered the action that the agent is taking
▪ The state of the environment consists of the EV’s SOC, time of day, time 

remaining in charging session, and EV’s most recent PV energy allocation
▪ Reward is characterized as the net amount of local energy that the agent 

consumes as a consequence for the past minute's charging set point 
decision.

Reinforcement Learning Implementation:
▪ Used Expected SARSA reinforcement learning method, an off policy, 

model free, temporal difference (TD) based method
▪ Leveraged value function approximation techniques to handle 

multi-dimensional, continuous state-action space
▪ Enhanced performance with domain knowledge by designing an action 

preference function to prohibit invalid actions in certain states

▪ Microgrid load profiles were simulated with Fraunhofer’s synPRO 
simulation tool developed in Python

▪ synPRO generates simulation traces of power systems components with a 
stochastic bottom-up approach, using real usage data and realistic models

▪ EV charging controller programmed in Python, runs concurrently with EV 
battery simulator running in synPRO; REST API used to exchange state 
information and set point commands

RESULTS
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Self Sufficiency 
Definition:

Local PV Energy Consumed
Total Energy Consumed

Mean Day Curve 
Definition:
A power curve where every 
data point represents the 
average power consumption 
at that point in time 
observed throughout the 
experiment

Experiment & Outcome
Trained agents on one 
year’s worth of simulation 
data, then observed its 
performance on a new 
year’s worth of data

Scenario 1 (charge only) 
increased overall self 
sufficiency from 28.4% to 
34.8% (6.4% increase)

Scenario 2 (charge and 
discharge) increased overall 
self sufficiency from 28.4% 
to 45.1% (16.7% increase)


